An Evaluation of Modeled Plume Injection Height with Satellite-Derived Observed Plume Height.

Autor: Raffuse, Sean M., Craig, Kenneth J., Larkin, Narasimhan K., Strand, Tara T., Sullivan, Dana Coe, Wheeler, Neil J. M., Solomon, Robert
Předmět:
Zdroj: Atmosphere; Mar2012, Vol. 3 Issue 1, p104-123, 21p
Abstrakt: Plume injection height influences plume transport characteristics, such as range and potential for dilution. We evaluated plume injection height from a predictive wildland fire smoke transport model over the contiguous United States (U.S.) from 2006 to 2008 using satellite-derived information, including plume top heights from the Multi-angle Imaging SpectroRadiometer (MISR) Plume Height Climatology Project and aerosol vertical profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). While significant geographic variability was found in the comparison between modeled plumes and satellite-detected plumes, modeled plume heights were lower overall. In the eastern U.S., satellite-detected and modeled plume heights were similar (median height 671 and 660 m respectively). Both satellite-derived and modeled plume injection heights were higher in the western U.S. (2345 and 1172 m, respectively). Comparisons of modeled plume injection height to satellite-derived plume height at the fire location (R² = 0.1) were generally worse than comparisons done downwind of the fire (R² = 0.22). This suggests that the exact injection height is not as important as placement of the plume in the correct transport layer for transport modeling. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index