A NUMERICAL INVESTIGATION OF AN ALPHA STIRLING ENGINE USING THE ROSS YOKE LINKAGE.

Autor: Tlili, Iskander
Předmět:
Zdroj: International Journal of Heat & Technology; 2012, Vol. 30 Issue 1, p23-35, 13p
Abstrakt: The realization that fossil fuel resources are becoming more and more scarce and considered the largest greenhouse gas emitters and its relationship with climate change, is becoming more pronounced leading to look for adequate strategies concerning energy saving and environmental protection. To achieve this target, much current interest was addressed to Stirling engine since it meets the demands of the efficient use of energy and environmental security. Hence, the development and the investigation about the Stirling engine have come to the attention of many scientific institutes and commercial companies. The engine operates on a closed thermodynamic cycle, which is a regenerative externally heated engine operating with a cycle that has the same thermal efficiency with Carnot cycle if it is ideal and lossless. Several prototypes have already been studied and produced specially gamma and beta configuration. Although the alpha Stirling engine using the Ross Yoke linkage has the advantage of minimizing lateral forces acting on the pistons leading to a more efficient and compact design compared to beta or gamma Stirling configuration, this kind of engine it is not well studied. The objective of this paper was to study the Ross Yoke Stirling engine, which has been developed and validated, by different kind of Stirling engine in order to perform a numerical modelisation of this engine. This model has been used to investigate the effect of the geometrical and physical parameters on Ross Yoke Stirling engine performance in order to determine the significant thermodynamic parameters having an impact on the performance of the engine. As a result, this analysis indicated that the performance of a Ross Yoke Stirling cycle engine with air as working gas depends critically on the heat input and the regenerator effectiveness. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index