Autor: |
Daehwan Chung, Farkas, Joel, Huddleston, Jennifer R., Olivar, Estefania, Westpheling, Janet, Freitag, Michael |
Předmět: |
|
Zdroj: |
PLoS ONE; Aug2012, Vol. 7 Issue 8, Special section p1-9, 9p |
Abstrakt: |
Thermophilic microorganisms capable of using complex substrates offer special advantages for the conversion of lignocellulosic biomass to biofuels and bioproducts. Members of the Gram-positive bacterial genus Caldicellulosiruptor are anaerobic thermophiles with optimum growth temperatures between 65uC and 78uC and are the most thermophilic cellulolytic organisms known. In fact, they efficiently use biomass non-pretreated as their sole carbon source and in successive rounds of application digest 70% of total switchgrass substrate. The ability to genetically manipulate these organisms is a prerequisite to engineering them for use in conversion of these complex substrates to products of interest as well as identifying gene products critical for their ability to utilize non-pretreated biomass. Here, we report the first example of DNA transformation of a member of this genus, C. bescii. We show that restriction of DNA is a major barrier to transformation (in this case apparently absolute) and that methylation with an endogenous unique α-class N4-Cytosine methyltransferase is required for transformation of DNA isolated from E. coli. The use of modified DNA leads to the development of an efficient and reproducible method for DNA transformation and the combined frequencies of transformation and recombination allow marker replacement between non- replicating plasmids and chromosomal genes providing the basis for rapid and efficient methods of genetic manipulation. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|