Autor: |
Pennella, Francesco, Rossi, Massimiliano, Ripandelli, Simone, Rasponi, Marco, Mastrangelo, Francesco, Deriu, Marco, Ridolfi, Luca, Kähler, Christian, Morbiducci, Umberto |
Zdroj: |
Biomedical Microdevices; Oct2012, Vol. 14 Issue 5, p849-862, 14p |
Abstrakt: |
This paper reports a new low-cost passive microfluidic mixer design, based on a replication of identical mixing units composed of microchannels with variable curvature (clothoid) geometry. The micromixer presents a compact and modular architecture that can be easily fabricated using a simple and reliable fabrication process. The particular clothoid-based geometry enhances the mixing by inducing transversal secondary flows and recirculation effects. The role of the relevant fluid mechanics mechanisms promoting the mixing in this geometry were analysed using computational fluid dynamics (CFD) for Reynolds numbers ranging from 1 to 110. A measure of mixing potency was quantitatively evaluated by calculating mixing efficiency, while a measure of particle dispersion was assessed through the lacunarity index. The results show that the secondary flow arrangement and recirculation effects are able to provide a mixing efficiency equal to 80 % at Reynolds number above 70. In addition, the analysis of particles distribution promotes the lacunarity as powerful tool to quantify the dispersion of fluid particles and, in turn, the overall mixing. On fabricated micromixer prototypes the microscopic-Laser-Induced-Fluorescence (μLIF) technique was applied to characterize mixing. The experimental results confirmed the mixing potency of the microdevice. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|