Autor: |
Zhong, Zhiyuan, Zhao, Dan |
Předmět: |
|
Zdroj: |
Journal of the Acoustical Society of America; Jul2012, Vol. 132 Issue 1, p271-281, 11p |
Abstrakt: |
Combustion instabilities are caused by the interaction of unsteady heat releases and acoustic waves. To mitigate combustion instabilities, perforated liners, typically subjected to a low Mach number bias flow (a cooling flow through perforated holes), are fitted along the bounding walls of a combustor. They dissipate the acoustic waves by generating vorticity at the rims of perforated apertures. To investigate the absorption of plane waves by a perforated liner with bias flow, a time-domain numerical model of a cylindrical lined duct is developed. The liners' damping mechanism is characterized by using a time-domain 'compliance.' The development of such time-domain compliance is based on simplified or unsimplified Rayleigh conductivity. Numerical simulations of two different configurations of lined duct systems are performed by combining a 1D acoustic wave model with the compliance model. Comparison is then made between the results from the present models, and those from the experiment and the frequency-domain model of previous investigation [Eldredge and Dowling, J. Fluid Mech. 485, 307-335(2003)]. Good agreement is observed. This confirms that the present model can be used to simulate the propagation and dissipation of acoustic plane waves in a lined duct in real-time. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|