Autor: |
Hansson, Mattias, Madsen, Ole Dragsbæk |
Zdroj: |
Translational Stem Cell Research; 2011, p23-34, 12p |
Abstrakt: |
Diabetes mellitus is a group of metabolic disorders characterized by chronic hyperglycaemia and perturbed carbohydrate, fat and protein metabolism due to inadequate production of the peptide hormone insulin. More than 200 million people worldwide suffer from diabetes. Diabetes mellitus and the micro- and macrovascular complications associated with the disease cause immense distress for the patients and impose an enormous economical burden on society. The development of complications in patients is tightly associated with poor glucose regulation, as hyperglycaemia has direct and indirect detrimental effects on the vascular system. Although intensive diabetes treatment can reduce the risk for developing vascular complications in some instances, it is also associated with an increased risk of hyperglycaemia. Hence, there is an unmet need for improved glucose regulation in diabetes patients. Although the reconstitution of a functional beta cell mass by transplantation of isolated islets can restore tight blood glucose control and thereby minimizes the risk of developing severe complications, a shortage of donor material is one of the factors preventing the general use of cell replacement therapy for the treatment of type 1 diabetes mellitus. Advances in the directed differentiation of pluripotent stem cells toward beta cells via the stepwise recapitulation of embryonic development have generated proof of concept demonstrating that stem cells may be an appropriate source of cells for the generation of therapeutic beta cells. However, progress toward a clinical application of this technology is slow and challenging. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|