Neuroglobin regulates hypoxic response of neuronal cells through Hif-1α- and Nrf2-mediated mechanism.

Autor: Hota, Kalpana B, Hota, Sunil K, Srivastava, Ravi B, Singh, Shashi B
Předmět:
Zdroj: Journal of Cerebral Blood Flow & Metabolism; Jun2012, Vol. 32 Issue 6, p1046-1060, 15p
Abstrakt: Oxygen sensing in hypoxic neurons has been classically attributed to cytochrome c oxidase and prolyl-4-hydroxylases and involves stabilization of transcription factors, hypoxia-inducible factor-1α (Hif-1α) and nuclear factor erythroid 2-related factor 2 (Nrf2) that mediate survival responses. On the contrary, release of cytochrome c into the cytosol during hypoxic stress triggers apoptosis in neuronal cells. We, here advocate that the redox state of neuroglobin (Ngb) could regulate both Hif-1α and Nrf2 stabilization and cytochrome c release during hypoxia. The hippocampal regions showing higher expression of Ngb were less susceptible to global hypoxia-mediated neurodegeneration. During normoxia, Ngb maintained cytochrome c in the reduced state and prevented its release from mitochondria by using cellular antioxidants. Greater turnover of oxidized cytochrome c and increased utilization of cellular antioxidants during acute hypoxia altered cellular redox status and stabilized Hif-1α and Nrf2 through Ngb-mediated mechanism. Chronic hypoxia, however, resulted in oxidation and degradation of Ngb, accumulation of ferric ions and release of cytochrome c that triggered apoptosis. Administration of N-acetyl-cysteine during hypoxic conditions improved neuronal survival by preventing Ngb oxidation and degradation. Taken together, these results establish a role for Ngb in regulating both the survival and apoptotic mechanisms associated with hypoxia. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index