Pharmacokinetics of spironolactone in man.

Autor: Abshagen, U., Rennekamp, H., Luszpinski, G.
Zdroj: Naunyn-Schmiedeberg's Archives of Pharmacology; 1976, Vol. 296 Issue 1, p37-45, 9p
Abstrakt: Five healthy male volunteers received 500 mg Aldactone orally together with 100 μCi H-20-21-spironolactone; one elderly patient received 1 mCi H-spironolactone without additional 'cold' drug. For 6 days the disposition kinetics of the drug were studied in plasma, urine and feces. The tritium concentrations in plasma reached a peak between 25-40 min after administration amounting to 2-3% of the dose/1. Up to the 12th h, they fell rapidly and showed a monoexponential decline ( t: 2.57±0.27 days) between the 36th and 96th h. Later, a striking increase in the speed of elimination of radioactivity from plasma ( t: 1.66±0.21 days) was observed. The biological half-life of labeled material in plasma was longer than that of fluorigenic compounds. 47-57% of the dose were excreted in urine and the remaining amount culd be detected in feces (total recovery 90%). The half-life of the urinary excretion rate was distinctly shorter ( t: 0.9±0.11 days) than that of total radioactivity in plasma. This, together with an observed increase of the polar fraction in urine from 35 up to 85%, which was accompanied by a decrease in plasma from 55 to 35%, suggests either tubular reabsorption or enterohepatic recirculation of lipophilic compounds. TLC-separation of the lipophilic fraction in urine revealed two previously unknown compounds of which the main congener was identified as 3-(3-oxo-7α-methylsulfonyl-6β, 17β-dihydroxy-4-androsten-17α-yl) propionic acid γ-lactone, as well as canrenone and the metabolites which have already been described (Karim and Brown, 1972; Karim et al., 1975). This metabolite represents the main lipophilic degradation product in urine within the first hours, whereas the 6β-OH-7α-methylsulfinylspirolactone leveled off and seemed to be an endexcretion product. For further characterisation, the polar fraction was subjected to acidic hydrolysis. The known metabolic pathways of spironolactone degradation are discussed. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index