Automatic postural responses in the cat: responses of hindlimb muscles to horizontal perturbations of stance in multiple directions.

Autor: Rushmer, D., Moore, S., Windus, S., Russell, C.
Zdroj: Experimental Brain Research; 1988, Vol. 71 Issue 1, p93-102, 10p
Abstrakt: The effect of the direction of unexpected horizontal perturbations of stance on the organization of automatic postural responses was studied in cats. We recorded EMG activity in eight proximal and distal muscles of the hindlimb along with vertical forces imposed by the limbs in awake behaving cats while they stood on an hydraulic platform. Postural responses to motion of the platform in 16 different horizontal directions were recorded. Vertical force changes were consistent with passive shifts of the center of mass and active correction of stance by the animals. When the perturbation was in the sagittal plane, vertical force changes began about 65 ms following initial platform movement. When the perturbation contained a component in the lateral direction, latency for vertical force changes was about 25 ms and an inflection in the vertical force trace was observed at 65 ms. No EMG responses were observed with latencies that were short enough to account for the early force component and it was concluded that this force change was due to passive shifts of the center of mass. The amplitude of the EMG responses of each muscle recorded varied systematically as perturbation direction changed. The directions for which an individual muscle showed measurable EMG activity were termed the muscle's 'angular range of activation.' No angular range of activation was oriented strictly in the A-P or lateral directions. Most muscles displayed angular ranges of activation that encompassed a range of less than 180°. Onset latencies of EMG responses also varied systematically with perturbation direction. The amplitude and latency relationships between muscles, which made up the organization of postural responses, also varied systematically as perturbation direction was changed. This result suggests that direction of perturbation determines organizational makeup of postural responses, and for displacements in the horizontal plane, is considered a continuous variable by the nervous system. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index