Toxin accumulation and feeding behaviour of the planktonic copepod Calanus finmarchicus exposed to the red-tide dinoflagellate Alexandrium excavatum.

Autor: Turriff, N., Runge, J., Cembella, A.
Předmět:
Zdroj: Marine Biology; 1995, Vol. 123 Issue 1, p55-64, 10p
Abstrakt: The planktonic copepod Calanus finmarchicus is a dominant member of the zooplankton community in the lower St. Lawrence Estuary in eastern Canada. Blooms of the toxic marine dinoflagellate Alexandrium excavatum which produces high cellular levels of paralytic shellfish poisoning (PSP) toxins, occur during the period of high C. finmarchicus production in summer in this region. To study the feeding behaviour of C. finmarchicus in the presence of Alexandrium spp., experiments were conducted in which female adult copepods collected from the St. Lawrence Estuary between May and September 1991 were exposed under controlled conditions to two toxic isolates of A. excavatum (Pr18b and Pr11f) from the estuary and to a non-toxic control (PLY 173) of a closely related species, A. tamarense isolated from the Tamar Estuary, Plymouth, U.K. Clearance rates on non-toxic A. tamarense cells averaged 5.5 ml ind h but were nearzero with either toxic isolate. When presented with a mixture of A. excavatum and the non-toxic diatom Thalassiosira weissflogii in varying proportions, C. finmarchicus fed upon the diatom but avoided the toxic dinoflagellate. Although feeding rates on A. excavatum were very low, toxin analysis by high-performance liquid chromatography with fluorescence detection (HPLC-FD) revealed that the PSP toxins were accumulated in copepods exposed to toxigenic dinoflagellates. The toxin composition in copepods was similar to that of the toxic dinoflagellate, but not necessarily identical, particularly after short-term (2-h) exposure, when relatively elevated levels of N-sulfocarbamoyl toxins were detected. The evidence suggests that C. finmarchicus ingests toxic dinoflagellate cells, either mistakenly or during exploratory bouts of feeding, and accumulates PSP toxins in its gut system and perhaps in other tissues. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index