Abstrakt: |
Five single-treatment methods used to stabilize seeded areas at urban and highway construction sites (asphalt-tacked straw, jute netting, mulch blanket, wood chips, excelsior blanket) were tested for their ability to control erosion of red clay soils by comparisons with exposed sites and multiple treatments. Sediment in runoff from experimental plots was characterized during low and high intensity precipitation from natural rainfall episodes during April, May, and June. Reductions in the total sediment concentration of runoff ranged from 28 percent (asphalt-tacked straw, 50 percent slope) to 90 percent (multiple treatments, 40 percent slope), with ≥85 percent of the eroded material composed of particles <0.04 mm in diameter. Larger size fractions were effectively reduced by all treatments tested regardless of slope (≥70 percent decrease). Established grass cover exceeded 90 percent on all plots after 60 days, but sediment release remained similar, attributable to high intensity rainfall, poor establishment of root systems, and piping on plots treated with tacked straw or jute netting. Results indicate that current stabilization methods shift sediment compostion toward a smaller particle size, causing single treatments to be minimally effective for controlling erosion of the major component of red clay soils. Because small particles have the greatest direct effect on aquatic biota, certain impacts of sedimentation may not be measurably lessened by single treatments in regions where red clays predominate even though the total sediment load is reduced by as much as 75 percent. Clearly, a multiple-treatment approach offers significantly greater control of erosion on red clay soils, however, current economic and construction policy represents a substantial deterrent to implementation. [ABSTRACT FROM AUTHOR] |