A Mixed Mode Cochlear Amplifier Including Neural Feedback.

Autor: Flax, Matthew R., Holmes, W. Harvey
Předmět:
Zdroj: AIP Conference Proceedings; 11/7/2011, Vol. 1403 Issue 1, p611-617, 7p
Abstrakt: The mixed mode cochlear amplifier (MMCA) model is derived from the physiology of the cochlea. It is comprised of three main elements of the peripheral hearing system: the cochlear mechanics, hair cell motility, and neurophysiology. This model expresses both active compression wave and active traveling wave modes of operation. The inclusion of a neural loop with a time delay, and a new paradigm for the mechanical response of the outer hair cells, are believed to be unique features of the MMCA. These elements combine to form an active feedback loop to constitute the cochlear amplifier, whose input is a passive traveling wave vibration. The result is a cycle-by-cycle amplifier with nonlinear response. This system can assume an infinite number of different operating states. The stable state and the first few amplitude-limited unstable (Hopf-bifurcated) states are significant in describing the operation of the peripheral hearing system. A hierarchy of models can be constructed from this concept, depending on the amount of detail included. The simplest model of the MMCA is a nonlinear delay line resonator. It was found that even this simple MMCA version can explain a large number of hearing phenomena, at least qualitatively. This paper concentrates on explaining the fractional octave shift from the living to postmortem response in terms of the new model. Other mechanical, hair cell and neurological phenomena can also be accounted for by the MMCA, including two-tone suppression behavior, distortion product responses, otoacoustic emissions and neural spontaneous rates. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index