Abstrakt: |
In this paper, we present a mathematical foundation, including a convergence analysis, for cascading architecture neural network. Our analysis also shows that the convergence of the cascade architecture neural network is assured because it satisfies Liapunov criteria, in an added hidden unit domain rather than in the time domain. From this analysis, a mathematical foundation for the cascade correlation learning algorithm can be found. Furthermore, it becomes apparent that the cascade correlation scheme is a special case from mathematical analysis in which an efficient hardware learning algorithm called Cascade Error Projection(CEP) is proposed. The CEP provides efficient learning in hardware and it is faster to train, because part of the weights are deterministically obtained, and the learning of the remaining weights from the inputs to the hidden unit is performed as a single-layer perception learning with previously determined weights kept frozen. In addition, one can start out with zero weight values (rather than random finite weight values) when the learning of each layer is commenced. Further, unlike cascade correlation algorithm (where a pool of candidate hidden units is added), only a single hidden unit is added at a time. Therefore, the simplicity in hardware implementation is also achieved. Finally, 5- to 8-bit parity and chaotic time series prediction problems are investigated; the simulation results demonstrate that 4-bit or more weight quantization is sufficient for learning neural network using CEP. In addition, it is demonstrated that this technique is able to compensate for less bit weight resolution by incorporating additional hidden units. However, generation result may suffer somewhat with lower bit weight quantization. [ABSTRACT FROM AUTHOR] |