Abstrakt: |
Transcription enhancer factor 3 (TEF3) is known to regulate the expression of muscle-specific genes and to play important roles in muscle development and diseases. However, little is known about its role in vascular endothelial growth factor (VEGF)- induced angiogenesis. Most recently, we discovered a novel function of TEF3, in which TEF3 is required for the up-regulation of a proangiogenic factor, Down syndrome candidate region 1 isoform 1L (DSCR1-1L), induced by VEGF-A165 in endothelial cells. Overexpression of TEF3 isoform 1 (TEF3-1) is sufficient to induce DSCR1-1L expression. Here, we report that knocking down the expression of TEF3 almost completely inhibits VEGF-A165 -induced proliferation, migration, tube formation, formation of F-actin stress fiber, and in vivo Matrigel angiogenesis. This inhibition cannot be rescued by DSCR1-1L overexpression. Further, overexpression of TEF3-1, but not its nuclear localization signal-deletion mutant (TEF3-ΔNLS), induces human umbilical vein endothelial cell proliferation, migration, tube formation, and formation of F-actin stress fiber, even in the absence of VEGF-A165 stimulation, which is partially inhibited by DSCR1-1L silencing. Our data demonstrate that TEF3, mainly its nuclear localization, is required for VEGF-A165 -induced endothelial proliferation, migration, tube formation, and in vivo Matrigel angiogenesis. [ABSTRACT FROM AUTHOR] |