Spartina alterniflora invasion increases soil inorganic nitrogen pools through interactions with tidal subsidies in the Yangtze Estuary, China.

Autor: Rong Hao Peng, Chang Ming Fang, Bo Li, Jia Kuan Chen
Předmět:
Zdroj: Oecologia; Mar2011, Vol. 165 Issue 3, p797-807, 11p, 1 Diagram, 6 Graphs, 1 Map
Abstrakt: Invasive alien plants increase both plant N and soil inorganic N pools in many terrestrial ecosystems. This is believed to be the result of altered plant-soil-microbe feedbacks that accelerate N cycling. However, it may also be due to the greater ability of invasive species to uptake lateral N subsidies that can modify ecosystem N dynamics. We conducted manipulative field experiments to determine the impact of smooth cordgrass ( Spartina alterniflora) invasion on the N cycling of salt marsh ecosystems in the Yangtze Estuary, China. The results showed that the aboveground plant N and soil inorganic N pools in S. alterniflora marshes, 14.39 and 3.16 g N m, were significantly higher than those in native common reed ( Phragmites australis) marshes, 11.61 and 2.29 g N m. These increases after invasion were explained by a significantly higher uptake of dissolved inorganic N (DIN) from tidal subsidies in S. alterniflora marshes (6.59 g N m) than from those in P. australis marshes (1.61 g N m), and not by soil organic N mineralization, which was not significantly different between S. alterniflora (6.45 g N m) and P. australis marshes (6.84 g N m) during the growing season. Our study indicated that the ecosystem engineering effects of S. alterniflora, which increases the interception of external N input, can be an alternative mechanism that increases plant N and soil inorganic N pools-especially in ecosystems with ample anthropogenic N subsidies, such as the coastal wetlands of China. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index