Abstrakt: |
Sumoylation, a post-translational modification, has important functions in both animals and plants. However, the biological function of the SUMO E3 ligase, SIZ1, in rice (Oryza sativa) is still under investigation. In this study, we employed two different genetic approaches, the use of siz1 T-DNA mutant and SIZ1-RNAi transgenic plants, to characterize the function of rice SIZ1. Genetic results revealed the co-segregation of single T-DNA insertional recessive mutation with the observed phenotypes in siz1. In addition to showing reduced plant height, tiller number and seed set percentage, both the siz1 mutant and SIZ1-RNAi transgenic plants showed obvious defects in anther dehiscence, but not pollen viability. The anther indehiscence in siz1 was probably a result of defects in endothecium development before anthesis. Interestingly, rice orthologs of AtIRX and ZmMADS2, which are essential for endothecium development during anther dehiscence, were significantly down-regulated in siz1. Compared with the wild-type, the sumoylation profile of high-molecular-weight proteins in mature spikelets was reduced significantly in siz1 and the SIZ1-RNAi line with notably reduced SIZ1 expression. The nuclear localization signal located in the SIZ1 C-terminus was sufficient for its nuclear targeting in bombarded onion epidermis. The results suggest the functional role of SIZ1, a SUMO E3 ligase, in regulating rice anther dehiscence. [ABSTRACT FROM AUTHOR] |