Phosphorylation and subcellular redistribution of high mobility group proteins 14 and 17, analyzed by mass spectrometry.

Autor: LOUIE, DONNA F., GLOOR, KRISTEN K., GALASINSKI, SCOTT C., RESING, KATHERYN A., AHN, NATALIE G.
Zdroj: Protein Science: A Publication of the Protein Society; 01/01/2000, Vol. 9 Issue 1, p170-179, 10p
Abstrakt: High mobility group (HMG) proteins 14 and 17 are nonhistone nuclear proteins that have been implicated in control of transcription and chromatin structure. To examine the posttranslational modifications of HMG-14 and -17 in vivo, HMG proteins were prepared from nuclear vs. cytosolic fractions of human K562 cells treated with 12-O-tetradecanoylphorbol 13-acetate (TPA) or okadaic acid (OA) and examined by electrospray mass spectrometry. Analysis of full-length masses demonstrated mono-, di-, and triphosphorylation of HMG-14 and mono- and diphosphorylation of HMG-17 from OA treated cells, whereas HMG-14 and -17 from TPA treated cells were monophosphorylated. Peptide mass and sequence analysis showed major and minor phosphorylation sites, respectively, at Ser24 and Ser28 in HMG-17, and Ser20 and Ser24 in HMG-14. These sites were found in the consensus sequence RRSARLSAK, within the nucleosomal binding domain of each protein. A third phosphorylation site in HMG-14 was located at either Ser6 or Ser7. Interestingly, the proportion of HMG-14 and -17 found in cytosolic pools increased significantly after 1 h of treatment compared to control cells and showed preferential phosphorylation compared with proteins from nuclear fractions. These results suggest that phosphorylation of HMG-14 and -7 interferes with nuclear localization mechanisms in a manner favoring release from nuclei. [ABSTRACT FROM PUBLISHER]
Databáze: Complementary Index