Autor: |
Higashiwaki, Masataka, Chowdhury, Srabanti, Mao-Sheng Miao, Swenson, Brian L., De Walle, Chris G. Van, Mishra, Umesh K. |
Předmět: |
|
Zdroj: |
Journal of Applied Physics; Oct2010, Vol. 108 Issue 6, p063719, 6p, 1 Color Photograph, 1 Chart, 5 Graphs |
Abstrakt: |
The dependence of electron density (ns) on AlGaN barrier thickness (dAlGaN) was studied for AlGaN/GaN single heterostructures whose dAlGaN was controlled by low-power Cl-based reactive ion etching (RIE) instead of growth. The samples showed a constant increase not only in ns but also in AlGaN surface barrier height (e[lowercase_phi_synonym]B) with dAlGaN, indicating the existence of low-density and distributed donor states on the AlGaN surface. Such a distribution of donor states differs from the commonly accepted model based on high-density and single-level surface donor states as the source of electrons in the two-dimensional electron gas (2DEG). The presence of a distribution of donor states is confirmed by first-principles calculations for a variety of surface structures for oxidized AlGaN surfaces. Donor states arise from areas of the surface that deviate from the electron-counting rule, leading to occupied surface states in the upper half of the band gap. The oxide formed on the surface after RIE results in a low-density distribution of surface donor states in which the highest occupied levels span the range from 1-2 eV below the AlGaN conduction-band minimum. The density of these states is comparable to the ns in the 2DEG and insufficient to pin the Fermi level, leading to a constant increase in e[lowercase_phi_synonym]B with dAlGaN. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|