Abstrakt: |
There are two main processes involved in the expression of circadian rhythmicity: entrainment and masking. Whereas the first operates via the central pacemaker to anticipate predictable environmental conditions, masking (mainly induced by light) functions as a direct modulator of the circadian output signal induced by nonpredictable events. The Chilean rodent Octodon degus presents both diurnal and nocturnal chronotypes when given free access to an exercise wheel. Two steady-entrainment phases and graded masking by light seem to generate the wide variability of chronotypes in this species. The aim of this study was to characterize the differential masking by light according to the individual chronotypes, their stability over time, and the influence of wheel running availability and ambient temperature upon the degus' nocturnality. To this end, diurnal and nocturnal degus were subjected to ultradian cycles (1:1-h light-dark [LD]), with and without wheel running availability, and under both normal and high diurnal ambient temperature cycles. The present results show that diurnal and nocturnal degus present a stable masking by light, each according to its respective chronotype. Thus, whereas diurnal animals increased their activity with light, in nocturnal degus light induced a sharp drop in wheel running activity. These two types of masking responses appeared not only when the animals were synchronized to the 12:12-h LD cycle, but also under ultradian cycles. Different masking effects persisted when wheel running was made unavailable and when the animals shifted their circadian activity patterns in response to ultradian cycles or to diurnal exposure to high temperatures. In conclusion, our results show that the positive and negative masking effects of light on diurnal and nocturnal degus, respectively, seem to occur independently of relative phase control by the central pacemaker or the negative masking induced by high environmental temperatures. (Author correspondence: ) [ABSTRACT FROM AUTHOR] |