Flexibility of ideal zeolite frameworks.

Autor: V. Kapko, C. Dawson, M. M. J. Treacy, M. F. Thorpe
Zdroj: Physical Chemistry Chemical Physics (PCCP); 8/14/2010, Vol. 12 Issue 30, p8531-8541, 11p
Abstrakt: We explore the flexibility windows of the 194 presently-known zeolite frameworks. The flexibility window represents a range of densities within which an ideal zeolite frameworkis stress-free. Here, we consider the ideal zeolite to be an assembly of rigid corner-sharing perfect tetrahedra. The corner linkages between tetrahedra are hard-sphere oxygen atoms, which are presumed to act as freely-rotating, force-free, spherical joints. All other inter-tetrahedral forces, such as coulomb interactions, are ignored. Thus, the flexibility window represents the null-space of the kinematic matrix that governs the allowable internal motions of the ideal zeolite framework. We show that almost all of the known aluminosilicate or aluminophosphate zeolites exhibit a flexibility window. Consequently, the presence of flexibility in a hypothetical framework topology promises to be a valuable indicator of synthetic feasibility. We describe computational methods for exploring the flexibility window, and discuss some of the exceptions to this flexibility rule. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index