Autor: |
Guz', A., Maksymyuk, V., Chernyshenko, I. |
Zdroj: |
Mechanics of Composite Materials; Jan2001, Vol. 37 Issue 1, p55-60, 6p |
Abstrakt: |
The basic geometric and physical relations and resolving equations of the theory of thin and nonthin orthotropic composite shells with account of nonlinear properties and low shear rigidity of their materials are presented. They are derived based on two theories, namely the theory of anisotropic shells employing the Timoshenko or Kirchhoff-Love hypothesis and the nonlinear theory of elasticity and plasticity of anisotropic media in combination with the Lagrange variational principle. The procedure and algorithm for the numerical solution of nonlinear (linear) problems are based on the method of successive approximations, the difference-variational method, and the Lagrange multiplier method. Calculations of the stress-strain state for a spherical shell with a circular opening loaded with internal pressure are presented. The effect of transverse shear strains and physical nonlinearity of the material on the distribution of maximum deflections and circumferential stresses in the shell, obtained according to two variants of the shell theories, is studied. A comparison of the results of the problem solution in linear and nonlinear statements with and without account of the shell shear strains is given. The numerical data obtained for thin and nonthin (medium thick) composite shells are analyzed. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|