Reorganization of Composition of Striatal Neurons Correlating with Behavior in the Monkey Macaca nemestrina.

Autor: Tolkunov, B., Orlov, A., Afanas'ev, S., Filatova, E., Selezneva, E.
Zdroj: Journal of Evolutionary Biochemistry & Physiology; Mar2003, Vol. 39 Issue 2, p219-227, 9p
Abstrakt: The available experimental data do not provide a sufficiently complete picture of the neuronal activity connected with some action of the animal, as they have been obtained under different experimental protocols and as a result of study of different cells. The present work was aimed at studying activity of the same neuron group at different moments of animal's behavior. A monkey ( Macaca nemestrina) was taught to perform a behavioral program consisting of several functional heterogeneous actions. The impulsive activity of striatal neurons was recorded in the central region of putamen with coordinates A 16.5, L7, and H 8–10 [18]. The activity of each neuron was recorded during 13 consecutive stages of the same behavioral task. As a whole, in 59 putamen neurons, 767 fragments of neuronal activity were studied. It was shown that the same neurons could be involved at different behavioral stages when the animal performed different actions. At individual stages, the number of neurons common with other behavioral stages reached 70–80% of all reactive cells at the stage. The number of the neurons common within the rest of 12 stages was determined for every program stage. The number of such common neurons established in the experiment was in 142 out of 156 cases higher than their number that could be expected on the basis of statistical relations. The data obtained indicate that the reorganization in composition of behavior-reactive cells at every behavioral stage occurs mainly by using the same neurons but not only the neurons that are specialized for the given action. The polymodality of individual striatal neurons is unlikely to be connected with that they have several functions, but results from that the same neuron can be a constituent of neuronal mosaics of different configurations corresponding to different behavioral moments. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index