Abstrakt: |
This review covers discoveries made over the past 30–35 years that were important to our understanding of the synthetic pathway required for initiation of the antennae or branches on complex N-glycans and O-glycans. The review deals primarily with the author's contributions but the relevant work of other laboratories is also discussed. The focus of the review is almost entirely on the glycosyltransferases involved in the process. The following topics are discussed. (1) The localization of the synthesis of complex N-glycan antennae to the Golgi apparatus. (2) The “evolutionary boundary” at the stage in N-glycan processing where there is a change from oligomannose to complex N-glycans; this switch correlates with the appearance of multicellular organisms. (3) The discovery of the three enzymes which play a key role in this switch, N-acetylglucosaminyltransferases I and II and mannosidase II. (4) The “yellow brick road” which leads from oligomannose to highly branched complex N-glycans with emphasis on the enzymes involved in the process and the factors which control the routes of synthesis. (5) A short discussion of the characteristics of the enzymes involved and of the genes that encode them. (6) The role of complex N-glycans in mammalian and Caenorhabditis elegans development. (7) The crystal structure of N-acetylglucosaminyltransferase I. (8) The discovery of the enzymes which synthesize O-glycan cores 1, 2, 3 and 4 and their elongation. [ABSTRACT FROM AUTHOR] |