Membrane structure of caveolae and isolated caveolin-rich vesicles.

Autor: Westermann, M., Leutbecher, Heiko, Meyer, Helmut W.
Zdroj: Histochemistry & Cell Biology; Jan1999, Vol. 111 Issue 1, p71-81, 11p
Abstrakt: Caveolae are specialized invaginated domains of the plasma membrane. Using freeze-fracture electron microscopy, the shape of caveolae and the distribution of intramembrane particles (integral membrane proteins) were analyzed. The caveolar membrane is highly curved and forms flask-like invaginations with a diameter of 80–120 nm with an open porus of 30–50 nm in diameter. The fracture faces of caveolar membranes are nearly free of intramembrane particles. Protein particles in a circular arrangement surrounding the caveolar opening were found on plasma membrane fracture faces. For isolation of caveolin-enriched membrane vesicles, the method of Triton X-100 solubilization, as well as a detergent-free isolation method, was used. The caveolin-rich vesicles had an average size of between 100 and 200 nm. No striated coat could be detected on the surface of isolated caveolin-rich vesicles. Areas of clustered intramembrane particles were found frequently on membrane fracture faces of caveolin-rich vesicles. The shape of these membrane protein clusters is often ring-like with a diameter of 30–50 nm. Membrane openings were found to be present in the caveolin-rich membrane vesicles, mostly localized in the areas of the clustered membrane proteins. Immunogold labeling of caveolin showed that the protein is a component within the membrane protein clusters and is not randomly distributed on the membrane of caveolin-rich vesicles. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index