Influence of alterations in culture condition and changes in perfusion parameters on the retention performance of a 20 μm spinfilter during a perfusion cultivation of a recombinant CHO cell line in pilot scale.

Autor: Iding, Kai, Lütkemeyer, Dirk, Fraune, Elisabeth, Gerlach, Kurt, Lehmann, Jürgen
Zdroj: Cytotechnology; Oct2000, Vol. 34 Issue 1/2, p141-150, 10p
Abstrakt: Since 1969 much attention has been devoted to the useof spinfilter systems for retention of mammalian cellsin continuous perfusion cultivations. Previousinvestigations dealt with hydrodynamic conditions,fouling processes and upscaling. But hydrodynamicconditions and fouling processes seem to have asecondary importance in spinfilter performance duringauthentic perfusion cultivations. Obviously,alterations in culture condition are more relevantespecially during long-term processes. Therefore, ourpratical approach focussed on the performance qualityof a commercially available 20 μm spinfilterduring a perfusion cultivation of a recombinant CHOcell line in pilot scale regarding the followingissues: 1) retention of viable cells in thebioreactor; 2) removal of dead cells and cell debrisfrom the bioreactor; 3) alterations in culturecondition; and 4) changes in perfusion mode.Furthermore, we tested the performance of 20 μmspinfilters in 2 and 100 l pilot scale using solidmodel particles instead of cells. Our investigationsshowed that retention of viable cells in pilot scalewas independent of spinfilter rotation velocity andperfusion rate; the retention increased from 75 to 95%corresponding to operation time, enlarging celldiameter and enhanced formation of aggregates in theculture during the perfusion cultivation. By means ofthe Cell Counter and Analyzer System (CASY) an operation cut off of 13 μm was determined forthis spinfilter. Using solid model particles in 2 lscale, optimal retention was achieved at a tip speedof 0.43 m s-1 (141 rpm) – furtherenhancement of spinfilter rotation velocity up to0.56 m s-1 (185 rpm) decreased the retentionrapidly. In pilot scale best retention performance wasobtained with tip speeds of 0.37 m s-1(35 rpm) and 1.26 m s-1 (120 rpm). Hence,significant retention in pilot scale could already beachieved with low agitation. Therefore, the additionof shear force protectives could be avoided so thatthe purification of the target protein from thesupernatant would be facilitated. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index