Abstrakt: |
Permanently operating Global Positioning System (GPS) receivers are used today, for example, in precise positioning and determination of atmospheric water vapour content. The GPS signals are delayed by various gases when traversing the atmosphere. The delay due to water vapour, the wet delay, is difficult to model using ground surface data and is thus often estimated from the GPS data. In order to obtain the most accurate results from the GPS processing, a modelling of the horizontal distribution of the wet delay may be necessary. Through simulations, three such models are evaluated, one of which is developed in this paper. In the first model the water vapour is assumed to be horizontally stratified, thus the wet delay can be described by only one zenith parameter. The second model gives the wet delay with one zenith and two horizontal gradient parameters. The third model uses the correlation between the wet-delay values in different directions. It is found that for large gradients and strong turbulence the two latter models yield lower errors in the estimated vertical coordinate and wet-delay parameters. For large gradients this improvement is up to 7 mm in the zenith wet-delay parameter, from 9 mm down to 2 and 4 mm for the second and third models, respectively. [ABSTRACT FROM AUTHOR] |