Blocks with cyclic defect of Hecke orders of Coxeter groups.

Autor: Roggenkamp, K. W.
Zdroj: Archiv der Mathematik; Mar2000, Vol. 74 Issue 3, p173-182, 10p
Abstrakt: Let $\cal B$ be a p-block of cyclic defect of a Hecke order over the complete ring $\Bbb {Z}[q] _{\langle q-1,p \rangle}$ ; i.e. modulo $\langle q-1 \rangle$ it is a p-block B of cyclic defect of the underlying Coxeter group G. Then $\cal B$ is a tree order over $\Bbb {Z}[q]_{\langle q-1, p \rangle }$ to the Brauer tree of B. Moreover, in case $\cal B$ is the principal block of the Hecke order of the symmetric group S( p) on p elements, then $\cal B$ can be described explicitly. In this case a complete set of non-isomorphic indecomposable Cohen-Macaulay $\cal B$ -modules is given. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index