On confinement in a light-cone Hamiltonian for QCD.

Autor: Pauli, H.C.
Zdroj: European Physical Journal C -- Particles & Fields; Feb1999, Vol. 7 Issue 2, p289-303, 15p
Abstrakt: The canonical front form Hamiltonian for non-Abelian SU(N) gauge theory in 3+1 dimensions and in the light-cone gauge is mapped non-perturbatively on an effective Hamiltonian which acts only in the Fock space of a quark and an antiquark. Emphasis is put on the many-body aspects of gauge field theory, and it is shown explicitly how the higher Fock-space amplitudes can be retrieved self-consistently from solutions in the $q\bar q$-space. The approach is based on the novel method of iterated resolvents and on discretized light-cone quantization driven to the continuum limit. It is free of the usual perturbative Tamm-Dancoff truncations in particle number and coupling constant and respects all symmetries of the Lagrangian including covariance and gauge invariance. Approximations are done to the non-truncated formalism. Together with vertex as opposed to Fock-space regularization, the method allows to apply the renormalization programme non-perturbatively to a Hamiltonian. The conventional QCD scale is found arising from regulating the transversal momenta. It conspires with additional mass scales to produce possibly confinement. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index