Abstrakt: |
The primary concern of this paper is to present three further applications of a multi-dimensional version of Bombieri’s theorem on primes in arithmetic progressions in the setting of a totally real algebraic number field K. First, we deal with the order of magnitude of a greatest (relative to its norm) prime ideal factor of , where the product runs over prime arguments ω of a given irreducible polynomial F which lie in a certain lattice point region. Then, we turn our attention to the problem about the occurrence of algebraic primes in a polynomial sequence generated by an irreducible polynomial of K with prime arguments. Finally, we give further contributions to the binary Goldbach problem in K. [ABSTRACT FROM AUTHOR] |