An Algorithm of Neural Network and Application to Data Processing in Concrete Engineering.

Autor: Wang, Ji Zong, Wang, Xi Juan, Ni, Hong Guang
Zdroj: Informatica; 2003, Vol. 14 Issue 1, p95-110, 16p
Abstrakt: It is a complex non linear problem to predict mechanical properties of concrete. As a new approach, the artificial neural networks can extract rules from data, but have difficulties with convergence by the traditional algorithms. The authors defined a new convex function of the grand total error and deduced a global optimization back propagation algorithm (GOBPA), which can solve the local minimum problem. For weights' adjustment and errors' computation of the neurons in various layers, a set of formulae are obtained by optimizing the grand total error function over a simple output space instead of a complicated weight space. Concrete strength simulated by neural networks accords with the data of the experiments on concrete, which demonstrates that this method is applicable to concrete properties' prediction meeting the required precision. Computation results show that GOBPA performs better than a linear regression analysis. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index