Doxycycline treatment reduces ischemic brain damage in transient middle cerebral artery occlusion in the rat.

Autor: Clark, Wayne, Lessov, Nikola, Lauten, Jeff, Hazel, Kristin
Zdroj: Journal of Molecular Neuroscience; Oct1997, Vol. 9 Issue 2, p103-108, 6p
Abstrakt: Agents that inhibit leukocyte adhesion including intercellular adhesion molecule-1 antibodies (anti-ICAM-1) have shown beneficial effects in experimental central nervous system (CNS) ischemia. Doxycycline inhibits leukocyte function in vitro by binding divalent cations and reduces spinal cord reperfusion injury. The authors used a clinically relevant model of focal CNS reperfusion injury to test whether treatment with doxycycline would reduce cerebral ischemic damage and improve functional outcome. Reversible middle cerebral artery occlusion was produced in adult Sprague-Dawley rats by advancing a filament into the internal carotid artery for 2 h. Animals received either IP doxycycline (10 mg/kg) ( N=13) or saline ( N=11) 30 min before ischemia, followed by 10mg/kg every 8 h×6. Both functional assessment (5 point neurologic scale) and infarct volume was evaluated at 48 h. Functional efficacy: doxycycline 0.5±0.2 (mean±SE) vs control 1.3±0.3 ( p=0.03). Infarct volume: doxycycline 56±18 mm3 vs control 158±44 mm3 ( p=0.03); This protective effect supports the role of doxycycline in reducing CNS reperfusion injury. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index