Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China.

Autor: Xu, Xiwei, Wen, Xueze, Zheng, Rongzhang, Ma, Wentao, Song, Fangming, Yu, Guihua
Zdroj: Science in China. Series D: Earth Sciences; Feb2003 Supplement, Vol. 46, p210-226, 17p
Abstrakt: Based on the concept of “active blocks” and spatial distribution of historical earthquakes with surface ruptures as well as major and subordinate active faults. The Sichuan-Yunnan region can be divided into four first-order blocks. They are the Markam block (I), the Sichuan-Yunnan rhombic block (II), Baoshan-Pu’er block (III), and Mizhina-Ximeng block (IV). Cut by sub-ordinate NE-trending active faults, the Sichuan-Yunnan rhombic block (II) can be further divided into two sub-blocks: the northwestern Sichuan sub-block (ll1) and the middle Yunnan sub-block (ll2), while the Baoshan- Pu’er block (III) can be further divided into three sub-blocks: Baoshan sub-block (Ill1), Jinggu sub-block (lll2), and Mengla sub-block (lll3). A quantitative study of offset landforms is carried out and the basic types of active faults and their long-term slip rates along the major boundaries of active blocks of different orders in the Sichuan-Yunnan region are determined, through slip vector analysis, the motion states of the active blocks are clarified and the deformation coordination on the block margins is discussed. It is suggested that the tectonic motion of the blocks in this region is a complex or superimposition of three basic types of motions: southeastward sliding, ro-tating on vertical axis, and uplifting. The Markam block (I), the northwestern Sichuan sub-block (ll1), and middle Yunnan sub-block (ll2) have a southeastward horizontal sliding rate of 1-5 mm/a, clockwise rotating angular rate of 1.4-4°/Ma, and uplifting rate of about 1 mm/a. The Baoshan-Pu’er (III) and Mizhina-Ximeng (IV) blocks have also been extensively clockwise rotated. This pattern of motion is a strain response to the collision between the Indian and Eurasian plates and the localized deformation and differential slip on the block margins associated with the northward motion of the Indian Plate. Because a set of transverse thrusts between the blocks absorbs and transforms some components of eastward or southeastward sliding motion, the eastward escape or extrusion of the Tibetan Plateau is limited as “imbricated thrusting transformation-limited extrusion model”. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index