Lifting valid inequalities for the precedence constrained knapsack problem.

Autor: van de Leensel, R.L.M.J., van Hoesel, C.P.M., van de Klundert, J.J.
Předmět:
Zdroj: Mathematical Programming; 1999, Vol. 86 Issue 1, p161, 25p
Abstrakt: Abstract. This paper considers the precedence constrained knapsack problem. More specifically, we are interested in classes of valid inequalities which are facet-defining for the precedence constrained knapsack polytope. We study the complexity of obtaining these facets using the standard sequential lifting procedure. Applying this procedure requires solving a combinatorial problem. For valid inequalities arising from minimal induced covers, we identify a class of lifting coefficients for which this problem can be solved in polynomial time, by using a supermodular function, and for which the values of the lilting coefficients have a combinatorial interpretation. For the remaining lifting coefficients it is shown that this optimization problem is strongly NP-hard. The same lifting procedure can be applied to (1,k)-configurations, although in this case, the same combinatorial interpretation no longer applies. We also consider K-covers, to which the same procedure need not apply in general. We show that facets of the polytope can still be generated using a similar lifting technique. For tree knapsack problems, we observe that all lifting coefficients can be obtained in polynomial time. Computational experiments indicate that these facets significantly strengthen the LP-relaxation. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index