Subordinate-level object classification reexamined.

Autor: Biederman, Irving, Subramaniam, Suresh, Bar, Moshe, Kalocsai, Peter, Fiser, József
Předmět:
Zdroj: Psychological Research; 1999, Vol. 62 Issue 2/3, p131, 23p
Abstrakt: Abstract The classification of a table as round rather than square, a car as a Mazda rather than a Ford, a drill bit as 3/8-inch rather than 1/4-inch, and a face as Tom have all been regarded as a single process termed "subordinate classification." Despite the common label, the considerable heterogeneity of the perceptual processing required to achieve such classifications requires, minimally, a more detailed taxonomy. Perceptual information relevant to subordinate-level shape classifications can be presumed to vary on continua of (a) the type of distinctive information that is present, nonaccidental or metric, (b) the size of the relevant contours or surfaces, and (c) the similarity of the to-be-discriminated features, such as whether a straight contour has to be distinguished from a contour of low curvature versus high curvature. We consider three, relatively pure cases. Case 1 subordinates may be distinguished by a representation, a geon structural description (GSD), specifying a nonaccidental characterization of an object's large parts and the relations among these parts, such as a round table versus a square table. Case 2 subordinates are also distinguished by GSDs, except that the distinctive GSDs are present at a small scale in a complex object so the location and mapping of the GSDs are contingent on an initial basic-level classification, such as when we use a logo to distinguish various makes of cars. Expertise for Cases 1 and 2 can be easily achieved through specification, often verbal, of the GSDs. Case 3 subordinates, which have furnished much of the grist for theorizing with "view-based" template models, require fine metric discriminations. Cases 1 and 2 account for the overwhelming majority of shape-based basic- and subordinate-level object... [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index