Soil water status mapping and two variable-rate irrigation scenarios.

Autor: Ian Yule
Předmět:
Zdroj: Precision Agriculture; Aug2009, Vol. 10 Issue 4, p342-355, 14p
Abstrakt: Abstract  Irrigation is the major user of allocated global freshwaters, and scarcity of freshwater threatens to limit global food supply and ecosystem function—hence the need for decision tools to optimize use of irrigation water. This research shows that variable alluvial soil ideally requires variable placement of water to make the best use of irrigation water during crop growth. Further savings can be made by withholding irrigation during certain growth stages. The spatial variation of soil water supplied to (1) pasture and (2) a maize crop was modelled and mapped by relating high resolution apparent electrical conductivity maps to soil available water holding capacity (AWC) at two contrasting field sites. One field site, a 156-ha pastoral farm, has soil with wide ranging AWCs (116–230 mm m−1); the second field site, a 53-ha maize field, has soil with similar AWCs (161–164 mm m−1). The derived AWC maps were adjusted on a daily basis using a soil water balance prediction model. In addition, real-time hourly logging of soil moisture in the maize field showed a zone where poorly drained soil remained wetter than predicted. Variable-rate irrigation (VRI) scenarios are presented and compared with uniform-rate irrigation scenarios for 3 years of climate data at these two sites. The results show that implementation of VRI would enable significant potential mean annual water saving (21.8% at Site 1; 26.3% at Site 2). Daily soil water status mapping could be used to control a variable rate irrigator. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index