Autor: |
Saino, Tomoyuki, Watson, Eileen L. |
Předmět: |
|
Zdroj: |
American Journal of Physiology: Cell Physiology; Jan2009, Vol. 296 Issue 1, pC88-C96, 9p, 10 Graphs |
Abstrakt: |
Arachidonic acid (AA) regulates intracellular calcium concentration ([Ca2+]i) in a variety of cell types including salivary cells. In the present study, the effects of serine/threonine phosphatases on AA-induced Ca2+ signaling in mouse parotid acini were determined. Mice were euthanized with CO2. Treatment of acini with the serine/threonine phosphatase inhibitor calyculin A blocked both thapsigargin- and carbachol-induced Ca2+ entry but resulted in an enhancement of AA-induced Ca2+ release and entry. Effects were mimicked by the protein phosphatase-1 (PP1) inhibitor tautomycin but were inhibited by the PP2A inhibitor okadaic acid. The protein kinase A (PKA) inhibitor PKI(14-22) significantly attenuated AA-induced enhancement of Ca2+ release and entry in the presence of calyculin A, whereas it had no effect on calyculin A-induced inhibition of thapsigargin-induced Ca2+ responses. The ryanodine receptor (RyR) inhibitor, tetracaine, and StHt-3 1, a peptide known to competitively inhibit type II PKA regulatory subunit binding to PKA-anchoring protein (AKAP), abolished calyculin A enhancement of AA-induced Ca2+ release and entry. StHt-31 also abolished forskolin potentiation of 4-chloro-3-ethylphenol (4-CEP) and AA on Ca2+ release but had no effect on 8-(4-methoxyphenylthio)-2' -O-methyladenosine-3',5 '-cAMP potentiation of 4-CEP responses. Results suggest that inhibition of PP1 results in an enhancement of AA-induced [Ca2+]i via PKA, AKAP, and RyRs. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|