Energy and charge transfer in blends of dendronized perylenes with polyfluorene.

Autor: Jaiser, Frank, Neher, Dieter, Meisel, Andreas, Nothofer, Heinz-Georg, Miteva, Tzenka, Herrmann, Andreas, Müllen, Klaus, Scherf, Ullrich
Předmět:
Zdroj: Journal of Chemical Physics; 9/21/2008, Vol. 129 Issue 11, p114901, 9p, 4 Diagrams, 7 Graphs
Abstrakt: Two generations of polyphenylene dendrimers with a perylene diimide core are compared with a nondendronized tetraphenoxyperylene diimide model compound regarding their application in organic light-emitting diodes (OLEDs). Single layer devices with blends of the first and second generation dendrimers in polyfluorene are investigated as active layers in OLEDs, and the effect of dendronization on the emission color and electroluminescence intensity is studied. In photoluminescence, higher degrees of dendronization lead to a reduction in Förster transfer from the polyfluorene host to the perylene, resulting in a larger contribution of the blue host emission in the photoluminescence spectra. In electroluminescence, the dopants appear to act as active traps for electrons, resulting in a predominant generation of excitons on the dye. This gives rise to a remarkably stronger contribution of red emission in electroluminescence than in photoluminescence where energy is exchanged exclusively via Förster transfer. The pronounced color change from red to blue with higher degrees of dendronization and larger driving voltages is explained by the competition of the recombination of free electrons with holes and trapping of electrons by the emitting guest. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index