Autor: |
Jeulin, Claudette, Seltzer, Virginie, Bailbé, Danielle, Andreau, Karine, Marano, Francelyne |
Předmět: |
|
Zdroj: |
American Journal of Physiology: Lung Cellular & Molecular Physiology; Sep2008, Vol. 295, pL489-L496, 8p, 5 Graphs |
Abstrakt: |
Particulate atmospheric pollutants interact with the human airway epithelium, which releases cytokines, chemokines, and EGF receptor (EGFR) ligands leading to proinflammatory responses. There is little information concerning the short-term effects of EGFR activation by extracellular ligands on ionic regulation of airway surface lining fluids. We identified in the membrane of human epithelial bronchial cells (16HBE14o- line) an endogenous calcium- and voltage-dependent, outwardly rectifying small-conductance chloride channel (CACC), and we examined the effects of EGF on CACC activity. Ion channel currents were recorded with the patch-clamp technique. In cell-attached membrane patches, CACC were activated by exposure of the external surface of the cells to physiological concentrations of EGF without any change in cytosolic Ca2+ concentration ([Ca2+]i) and inhibited by tyrphostin AG-1478 (an inhibitor of EGFR that also blocks EGF-dependent Src family kinase activation). EGF activation of c-Src protein in 16HBE14o- cells was observed, and the signaling pathway elicited by EGFR was blocked by tyrphostin AG-1478. In excised inside-out membrane patches CACC were activated by exposure of the cytoplasmic face of the channels to the human recombinant Src(p60c-crc) kinase with endogenous or exogenous ATP and inhibited by λ-protein phosphatase. Secretion of EGFR ligands by epithelial airway cells exposed to pollutants would then elicit a rapid and direct ionic response of CACC mediated by EGFR activation via a Src kinase family-dependent signaling pathway. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|