Ex-vivo cellular MRI with b-SSFP: quantitative benefits of 3 T over 1.5 T.

Autor: Brian Rutt, Paula Foster
Předmět:
Zdroj: MAGMA: Magnetic Resonance Materials in Physics, Biology & Medicine; Aug2008, Vol. 21 Issue 4, p251-259, 9p
Abstrakt: Abstract Introduction  The use of MRI with iron-based magnetic nanoparticles for imaging cells is a rapidly growing field of research. We have recently reported that single iron-labeled cells could be detected, as signal voids, in vivo in mouse brains using a balanced steady-state free precession imaging sequence (b-SSFP) and a customized microimaging system at 1.5 T. Methods  In the current study we assess the benefits, and challenges, of using a higher magnetic field strength for imaging iron-labeled cells with b-SSFP, using ex vivo mouse brain specimens imaged with near identical systems at 1.5 and 3.0 T. Results  The substantial banding artifact that appears in 3 T b-SSFP images was readily minimized with RF phase cycling, allowing for banding-free b-SSFP images to be compared between the two field strengths. This study revealed that with an optimal 3 T b-SSFP imaging protocol, more than twice as many signal voids were detected as with 1.5 T. Conclusion  There are several factors that contributed to this important result. First, a greater-than-linear SNR gain was achieved in mouse brain images at 3 T. Second, a reduction in the bandwidth, and the associated increase in repetition time and SNR, produced a dramatic increase in the contrast generated by iron-labeled cells. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index