Autor: |
V.V. Zalipaev, A.B. Movchan, I.S. Jones |
Předmět: |
|
Zdroj: |
Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences; Aug2008, Vol. 464 Issue 2096, p2037-2054, 18p |
Abstrakt: |
A correspondence between continuum periodic structures and discrete lattices is well known in the theory of elasticity. Frequently, lattice models are the result of the discretization of continuous mechanical problems. In this paper, we discuss the discretization of two-dimensional square thin-walled structures. We consider the case when thin-walled bridges have defects in the vicinity of junctions. At these points, the displacement satisfies an effective Robin-type boundary condition. We study a defect vibration mode localized in the neighbourhood of the damaged junction. We analyse dispersion diagrams that show the existence of standing waves in a structure with periodically distributed defects. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|