Effect of mat structure on modulus of elasticity of oriented strandboard.

Autor: Luming Fang, Xiaohong Liu, Robert Wellwood
Předmět:
Zdroj: Wood Science & Technology; Mar2008, Vol. 42 Issue 3, p197-210, 14p
Abstrakt: Abstract  A model to predict bending stiffness of oriented strandboard (OSB) was tested with pilot plant experimental data. The experimental procedure developed in this study is unique in that it allows the model to be tested for extensive vertical configurations of strand angle distribution. After validation, the model was used to simulate a typical three-layer cross-oriented OSB panel with a vertical density profile and strand angle distribution measured on industrial panels. Analysis of the simulated vertical distribution of modulus of elasticity (MOE) indicated that the layers near the panel surfaces contributed much more to the effective parallel panel MOE than those close to the panel thickness center, with 80% of parallel MOE coming from the top 41% of weight and 32% of thickness. The effectiveness of methods to increase parallel bending stiffness through improving mat structure was evaluated. Increasing face/core weight ratio from 54/46 to 66/34 resulted in a 3.7% increase in simulated parallel MOE. Alignment of strands in face layers was identified having a greater potential to increase parallel MOE. Simulations with three improved strand angle distributions showed gains of 5.7, 12.0 and 19.8% in parallel MOE compared with a typical strand angle distribution of industrial OSB panels. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index