Imaging CFTR in its native environment.

Autor: Schillers, Hermann
Předmět:
Zdroj: Pflügers Archiv: European Journal of Physiology; Apr2008, Vol. 456 Issue 1, p163-177, 15p, 4 Color Photographs, 1 Black and White Photograph, 1 Diagram, 6 Graphs
Abstrakt: Application of atomic force microscopy (AFM) on isolated plasma membranes is a valuable method to study membrane proteins down to single-molecule level in their native environment. The cystic fibrosis transmembrane conductance regulator (CFTR), a protein of the adenosine triphosphate-binding cassette transporter superfamily, is known to play a crucial role in maintaining the salt and water balance on the epithelium and to influence processes such as cell volume regulation. A mutation in the gene encoding for CFTR results in cystic fibrosis (CF), a very common lethal genetic disease. Identification of CFTR within the cell membrane at the single-molecule level makes it feasible to visualize the distribution and organization of CFTR proteins within the cell membrane of healthy individuals and CF patients. We were able to show that human red blood cells have a CFTR distribution comparable to that of epithelial cells and that the number of CFTR in cells derived from CF patients is strongly reduced. Studies on CFTR-expressing oocytes disclose CFTR dynamics upon CFTR activation. We observed that cyclic adenosine monophosphate induces an insertion of CFTR in the plasma membrane and the formation of heteromeric CFTR-containing structures with yet unknown stoichiometry. The structure of CFTR was identified by high-resolution scans of immunogold-labeled CFTR, revealing that CFTR forms a tail-to-tail dimer with a central pore. In conclusion, these studies show that AFM experiments on isolated plasma membranes allow not only quantification and localization of membrane proteins but also provide insight in their dynamics at a single-molecule level. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index