Accurate extrapolation of electron correlation energies from small basis sets.

Autor: Bakowies, Dirk
Předmět:
Zdroj: Journal of Chemical Physics; 10/28/2007, Vol. 127 Issue 16, p164109, 12p, 5 Charts, 3 Graphs
Abstrakt: A new two-point scheme is proposed for the extrapolation of electron correlation energies obtained with small basis sets. Using the series of correlation-consistent polarized valence basis sets, cc-pVXZ, the basis set truncation error is expressed as δEX∝(X+ξi). The angular momentum offset ξi captures differences in effective rates of convergence previously observed for first-row molecules. It is based on simple electron counts and tends to values close to 0 for hydrogen-rich compounds and values closer to 1 for pure first-row compounds containing several electronegative atoms. The formula is motivated theoretically by the structure of correlation-consistent basis sets which include basis functions up to angular momentum L=X-1 for hydrogen and helium and up to L=X for first-row atoms. It contains three parameters which are calibrated against a large set of 105 reference molecules (H, C, N, O, F) for extrapolations of MP2 and CCSD valence-shell correlation energies from double- and triple-zeta (DT) and triple- and quadruple-zeta (TQ) basis sets. The new model is shown to be three to five times more accurate than previous two-point schemes using a single parameter, and (TQ) extrapolations are found to reproduce a small set of available R12 reference data better than even (56) extrapolations using the conventional asymptotic limit formula δEX∝X-3. Applications to a small selection of boron compounds and to neon show very satisfactory results as well. Limitations of the model are discussed. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index