Abstrakt: |
Mathematical simulations of oxygen delivery to tissue from capillaries that take into account the particulate nature of blood flow predict the existence of oxygen tension (Po2) gradients between erythrocytes (RBCs). As RBCs and plasma alternately pass an observation point, these gradients are manifested as rapid fluctuations in Po2, also known as erythrocyte-associated transients (EATs). The impact of hemodilution on EATs and oxygen delivery at the capillary level of the microcirculation has yet to be elucidated. Therefore, in the present study, phosphorescence quenching microscopy was used to measure EATs and Po2 in capillaries of the rat spinotrapezius muscle at the following systemic hematocrits (Hctsys): normal (39%) and after moderate (HES1; 27%) or severe (HES2; 15%) isovolemic hemodilution using a 6% hetastarch solution. A 532-nm laser, generating 10-µs pulses concentrated onto a 0.9-µm spot, was used to obtain plasma Po2 values 100 times/s at points along surface capillaries of the muscle. Mean capillary Po2 (Pco2 means ± SE) significantly decreased between conditions (normal: 56 ± 2 mmHg, n = 45; HES1: 47 ± 2 mmHg, n = 62; HES2: 27 ± 2 mmHg, n = 52, where n = capillary number). In addition, the magnitude of Po2 transients (ΔPo2) significantly decreased with hemodilution (normal: 19 ± 1 mmHg, n = 45; HES1: 11 ± 1 mmHg, n = 62; HES2: 6 ± 1 mmHg, n = 52). Results suggest that the decrease in Pco2 and ΔPo2 with hemodilution is primarily dependent on Hctsys and subsequent microvascular compensations. [ABSTRACT FROM AUTHOR] |