Optical and structural study of GaN nanowires grown by catalyst-free molecular beam epitaxy. II. Sub-band-gap luminescence and electron irradiation effects.

Autor: Robins, Lawrence H., Bertness, Kris A., Barker, Joy M., Sanford, Norman A., Schlager, John B.
Předmět:
Zdroj: Journal of Applied Physics; 6/1/2007, Vol. 101 Issue 11, p113506, 8p, 1 Chart, 6 Graphs
Abstrakt: GaN nanowires with diameters of 50–250 nm, grown by catalyst-free molecular beam epitaxy, were characterized by photoluminescence (PL) and cathodoluminescence (CL) spectroscopy at temperatures from 3 to 297 K. Both as-grown samples and dispersions of the nanowires onto other substrates were examined. The properties of the near-band-edge PL and CL spectra were discussed in Part I of this study by [Robins et al. [L. H. Robins, K. A. Bertness, J. M. Barker, N. A. Sanford, and J. B. Schlager, J. Appl. Phys. 101,113505 (2007)]. Spectral features below the band gap, and the effect of extended electron irradiation on the CL, are discussed in Part II. The observed sub-band-gap PL and CL peaks are identified as phonon replicas of the free-exciton transitions, or excitons bound to structural defects or surface states. The defect-related peaks in the nanowires are correlated with luminescence lines previously reported in GaN films, denoted the Y lines [M. A. Reshchikov and H. Morkoc, J. Appl. Phys. 97, 061301 (2005)]. The CL was partially quenched by electron beam irradiation for an extended time; the quenching was stronger for the free and shallow-donor-bound exciton peaks than for the defect-related peaks. The quenching appeared to saturate at high irradiation dose (with final intensity ≈30% of initial intensity) and was reversible on thermal cycling to room temperature. The electron irradiation-induced quenching of the CL is ascribed to charge injection and trapping phenomena. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index