Abstrakt: |
Populations of the autumnal moth, Epirrita autumnata, exhibit cycles with high amplitudes in northernmost Europe, culminating in devastating outbreak densities at favourable sites. Parasitism by hymenopteran parasitoids has been hypothesised to operate with a delayed density dependence capable of producing the observed dynamics. It has also been hypothesised that insects in crowded conditions invest greatly in their immunity as a counter-measure to increased risk of parasitism and pathogen infections. Furthermore, inducible plant defences consequent to grazing by herbivorous insects may be linked to the performance of parasitoids and pathogens through increased immunocompetence of the herbivore feeding on the foliage, in which the defence induction has taken place. At ten sampling sites, we quantified larval abundance, outbreak status and percentage larval parasitism during an extended peak phase of a population cycle. These population level covariates, together with an individual pupal mass, were used to explain differences in the immune defence, measured as an encapsulation reaction to artificial antigen. We also conducted a field study for an investigation of the susceptibility of autumnal moth pupae to naturally occurring pupal parasitoids. We did not find obvious differences between the encapsulation rate of autumnal moths originating from the sites with different past and current larval densities and risks for parasitism. The best ranked statistical models included pupal mass and outbreak status as explanatory variables, although both showed only slight effects on the encapsulation rate. The host resistance test revealed positive relationships between the encapsulation rate, body size and percentage parasitism of the exposed pupae, indicating that pupal parasitoids chose, and/or survived better, in large host individuals irrespective of their encapsulation ability. Thus, our results do not provide support for the hypothesis that variation in the immune function drives or modulates population cycles of autumnal moths. [ABSTRACT FROM AUTHOR] |