Autor: |
Gopstein, Avi M., Haile, William B., Merkowitz, Stephen M. |
Předmět: |
|
Zdroj: |
AIP Conference Proceedings; 2006, Vol. 873 Issue 1, p571-575, 5p, 2 Diagrams, 1 Chart |
Abstrakt: |
Self-gravity noise due to sciencecraft distortion and motion is expected to be a significant contributor to the LISA acceleration noise budget. To minimize these effects, the gravitational field at each proof mass must be kept as small, flat, and constant as possible. Most likely it will not be possible to directly verify that the LISA sciencecraft meets these requirements by measurements; they must be verified by models. The LISA Integrated Modeling team developed a new self-gravity tool that calculates the gravitational forces, moments, and gradients on the proof masses and creates a color coded map of the component contributions to the self-gravity field. The color mapping provides an easily recognized and intuitive interface for determining the self-gravity hot-spots of a spacecraft design. Self-gravity color maps can be generated as true representations of the steady-state, or as an approximation of the variability through computation of the difference values across multiple physical states. We present here an overview of the tool and the latest self-gravity results calculated using a recent design of LISA. © 2006 American Institute of Physics [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|