Toxic Effects of Fumonisin in Mouse Liver Are Independent of the Peroxisome Proliferator-Activated Receptor α.

Autor: Voss, Kenneth A., Liu, Jie, Anderson, Steven P., Dunn, Corrie, Miller, J. David, Owen, Joy R., Riley, Ronald T., Bacon, Charles W., Corton, J. Christopher
Předmět:
Zdroj: Toxicological Sciences; Jan2006, Vol. 89 Issue 1, p108-119, 12p
Abstrakt: Fumonisin mycotoxins occur worldwide in corn and corn-based foods. Fumonisin B1 (FB1) is a rodent liver carcinogen and suspected human carcinogen. It inhibits ceramide synthase and increases tissue sphinganine (Sa) and sphingosine (So) concentrations. Events linking disruption of sphingolipid metabolism and fumonisin toxicity are not fully understood; however, Sa and So were shown to bind mouse recombinant peroxisome proliferator-activated receptor α (PPARα) in vitro. To investigate the role of PPARα in fumonisin hepatotoxicity in vivo, wild-type (WT) and PPARα-null mice were fed control diets or diets containing 300 ppm FB1, Fusarium verticillioides culture material (CM) providing 300 ppm FB1, or 500 ppm of the peroxisome proliferator WY-14,643 (WY) for 1 week. WY-fed WT mice exhibited hepatomegaly, an effect not found in WY-fed PPARα-null mice, and WY did not change liver sphingoid base concentrations in either strain. Hepatotoxicity found in FB1- and CM-fed WT and PPARα-null mice was similar, qualitatively different from that found in WY-treated animals, and characterized by increased Sa concentration, apoptosis, and cell proliferation. Transcript profiling using oligonucleotide arrays showed that CM and FB1 elicited similar expression patterns of genes involved in cell proliferation, signal transduction, and glutathione metabolism that were different from that altered by WY. Real-time RT-PCR analysis of gene expression demonstrated PPARα-dependence of lipid metabolism gene expression in WY-treated mice, whereas PPARα-independent alterations of genes in lipid metabolism, and other categories, were found in CM- and FB1-fed mice. Together, these findings demonstrate that FB1- and CM-induced hepatotoxicity in mice does not require PPARα. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index