Komatiites and nickel sulfide ores of the Black Swan area, Yilgarn Craton, Western Australia. 3: Komatiite geochemistry, and implications for ore forming processes.

Autor: Stephen Barnes, Robin Hill, Noreen Evans
Zdroj: Mineralium Deposita; Number 7, Vol. 39 Issue 7, p729-751, 23p
Abstrakt: Abstract The Black Swan komatiite sequence is a package of dominantly olivine-rich cumulates with lesser volumes of spinifex textured rocks, interpreted as a section through an extensive komatiite lava flow field. The sequence hosts a number of nickel sulfide orebodies, including the Silver Swan massive shoot and the Cygnet and Black Swan disseminated orebodies. A large body of whole rock analyses on komatiitic rocks from the Black Swan area has been filtered for metasomatic effects. With the exception of mobile elements such as Ca and alkalis, most samples retain residual igneous geochemistry, and can be modelled predominantly by fractionation and accumulation of olivine. Whole rock MgO–FeO relationships imply a relatively restricted range of olivine compositions, more primitive than the olivine which would have been in equilibrium with the transporting komatiite lavas, and together with textural data indicate that much of the cumulus olivine in the sequence was transported. Flow top compositions show evidence for chromite saturation, but the cumulates are deficient in accumulated chromite. Chromite compositions are typical of those found in compound flow-facies komatiites, and are distinct from those in komatiitic dunite bodies. Incompatible trace element abundances show three superimposed influences: control by the relative proportion of olivine to liquid; a signature of crustal contamination and an overprint of metasomatic introduction of LREE, Zr and Th. This overprint is most evident in cumulates, and relatively insignificant in the spinifex rocks. Platinum and palladium behaved as incompatible elements and are negatively correlated with MgO. They show no evidence for wholesale depletion due to sulfide extraction, which was evidently restricted to specific lava tubes or pathways. The lack of correspondence between PGE depletion and contamination by siliceous material implies that contamination alone is insufficient to generate S-saturation and ore formation in the absence of sulfide in the assimilant. Contamination signatures in spinifex-textured rocks may be a guide to Ni-sulfide mineralisation, but are not entirely reliable in the absence of other evidence. The widespread vesicularity of the sequence may be attributable to assimilated water rather than to primary mantle-derived volatiles, and cannot be taken as evidence for primary volatile-rich magmas. The characteristic signature of the Black Swan Succession is the presence of highly localised disseminated sulfide within a sequence showing more widespread evidence for crustal contamination and interaction with its immediate substrate. This has important implications for the applicability of trace element geochemistry in exploration for komatiite-hosted nickel deposits. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index