The biochemical basis for growth inhibition by L-phenylalanine in Neisseria gonorrhoeae.

Autor: Bhatnagar, R. K., Berry, A., Hendry, A. T., Jensen, R. A.
Předmět:
Zdroj: Molecular Microbiology; Mar1989, Vol. 3 Issue 3, p429-435, 7p
Abstrakt: Clinical isolates of Neisseria gonorrhoeae are commonly subject to growth inhibition by phenylpyruvate or by L-phenylalanine. A blockade of tyrosine biosynthesis is indicated since inhibition is reversed by either L-tyrosine or 4-hydroxyphenylpyruvate. Phenylalanine-resistant (PheR) and phenylalanine-sensitive (PheS) isolates both have a single 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase that is partially inhibited by L-phenylalanine (80%). However, PheS and PheR isolates differ in that the ratio of phenylpyruvate aminotransferase to 4-hydroxyphenylpyruvate aminotransferase is distinctly greater in PheS isolates than in PheR isolates. A mechanism for growth inhibition is proposed in which phenylalanine exerts two interactive effects, (i) Phenylalanine decreases precursor flow to 4-hydroxyphenylpyruvate through its controlling effect upon DAHP synthase; and (ii) phenylalanine is largely transaminated to phenylpyruvate, which saturates both aminotransferases, preventing transamination of an already limited supply of 4-hydroxyphenylpyruvate to L-tyrosine. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index